Synthesis of Top-Down and Bottom-Up Scaling of Regional Terrestrial Carbon Dioxide Fluxes

Implications for Global Terrestrial CO₂ Flux

*Corresponding author contact: The Pennsylvania State University, Dept. of Meteorology, University Park, PA 16802 USA 814-865-9617 adesai@psu.edu

MOTIVATION

- Quantifying regional scale (30-100 km) land-atmosphere exchange of carbon dioxide is vital for understanding spatio-temporal variability in climate, CO₂, and the impact of global changes in climate, CO₂, and land use on the landscape scale.
- Global ecosystem and trace-transport inverse models perform poorly at characterizing regional-scale CO₂ exchange in complex landscapes, while low spatial-density intensive stand-level measurements cannot easily scale to the landscape.
- Roles of disturbance, forest management and wetlands on carbon exchange remain poorly constrained.
- Unique opportunity to construct verifiable, regional carbon balances as part of multi-investigator intensive sampling in complex, managed forested ecosystems of the upper Midwest (Chequamegon Ecosystem-Atmosphere Study: http://cheas.psu.edu).

APPROACH

- **Regionally**, CO₂ concentrations in tall towers and 12-30 mm resolution CO₂ flux tower data are measured across the region.
- **Daily**, flux decomposition and extension methods are used to aggregate fluxes to monthly timescales.
- **Monthly**, tall tower and footprint mixing ratio data are used to estimate regional net carbon exchange.
- **Monthly**, tall tower and footprint mixing ratio data are used to estimate regional net carbon exchange.

LAND COVER VARIABILITY

- Wetlands, deciduous and natural disturbances occur in small, non-uniformly distributed patches that aggregate to more than 50% of the landscape and are difficult to assess with coarse-resolution (e.g. 230 m) remote sensing.
- Biometric and chamber-based measurements of hardwoods around tall tower appear less productive than eddy covariance observations.
- Highest productivity in full-stocked stands occurs at intermediate terrain positions, too much moisture at surface to support stands of lesser productive species and too little for gaseous fluxes in primarily upland species.
- Effect confined to productive middle by disturbance-induced change in species composition and age, and standing trees.

FLUX TOWER OBSERVATIONS

- Stand-level eddy covariance flux measurements have observed significant spatial variability in net and gross CO₂ exchange, with multiple sources of CO₂, both terrestrial and atmospheric.
- Annual variability in fluxes is general coherent among sites, statistically significant and basically correlated with climate variability.
- Model of climate variability parameterized with tower data. Monte Carlo techniques explain seasonal variability in tall tower fluxes.

FOOTPRINT DECOMPOSITION AND EXTENSION

- High-resolution atmospheric boundary layer CO₂ mixing measurements can be used with ecosystem footprint scaling methods to infer regional carbon exchange.
- Mesoscale network of high-resolution CO₂ concentration systems installed at 75 m in 2003 and 2004 growing seasons.
- Virtual tall tower method can be applied to scale surface layer (0-10 m) measurements to boundary layer average (0-2000 m).
- Regional flux uncertainty expected to be significantly smaller compared to single-tower method.
- Concentration network and tropospheric aircraft or remotely sensed column CO₂ can be used with simpler boundary-layer budget methods.
- Preliminary budget results show encouraging ability to assess regional carbon exchange.
- More information on top-down inversion at Davies et al. poster.

ACKNOWLEDGEMENTS

This work was funded in part by grants from the Dept. of Energy (DOE), National Institute for Global Environmental Change, DOE Office of Biological and Environmental Research, Natural Science Foundation (NSF), Earth Sciences, NASA Climate Modeling and Diagnostics Lab, USDA Forest Service Northern Great Lakes Research Program and the USDA Forest Service Northern Central Research Station. We also thank the many site land owners, managers, field crew members, students, technicians and engineers who made this work possible.

IMPLICATIONS

- Ensuring consistency is seen in top-down and bottom-up methods, but the discrepancies are substantially larger than desired level of consistency.
- Model results support hypothesis that regional carbon balances limited to simple modeling of eddy covariance data.
- Work underway in collecting observations on poorly represented cover types, and obtaining information of forest structure so as to improve the degree of detail needed to observe and model regional carbon budgets in this complex landscape, which is a fundamental, enabling step required to achieve the aims of regional, continental and global scale carbon cycle analyses.
SYNTHESIS OF TOP-DOWN AND BOTTOM-UP SCALING OF REGIONAL TERRESTRIAL CARBON DIOXIDE FLUXES: IMPLICATIONS FOR GLOBAL TERRESTRIAL CO$_2$ FLUX

A.R. Desai1, W. Wang1, D.M. Ricciuto1, B.D. Cook2, F.A. Heinsch3, K.J. Davis1, A. Noormets4, J. Chen1, P.V. Bolstad2, S.J. Richardson1, N. Miles1, M. Uliasz5, and P.R. Moorcroft6

1Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802; adesai@psu.edu
2Dept. of Forest Resources, University of Minnesota, St. Paul, MN 55108
3School of Forestry, University of Montana, Missoula, MT 59812
4Dept. of Earth, Ecological and Environmental Sciences, The University of Toledo, Toledo, OH 43606
5Dept. of Atmospheric Science, The Colorado State University, Fort Collins, CO 80523
6Dept. of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

ABSTRACT
Quantifying the regional scale (10-1000 km) exchange of carbon dioxide between terrestrial ecosystems and the atmosphere is vital for understanding the spatial and temporal variation in global CO$_2$ flux. Multiple investigations of top-down and bottom-up regional flux scaling are currently underway in the northern Great Lakes region, USA. Landscape and regional scale CO$_2$ fluxes from multiple line of evidence, including eddy covariance multi-tower aggregation, tall-tower flux footprint decomposition, ecosystem modeling, CO$_2$ mixing ratio boundary layer budgets and regional inversions reveal variations in CO$_2$ flux arising from variations in vegetation type, canopy structure and interannual climate variability. With careful calibration, encouraging consistency is seen from several independent regional flux estimates. Without parameter optimization and high resolution maps of land cover, global scale remote-sensing and ecosystem-model CO$_2$ flux estimates fail to accurately capture the local regional CO$_2$ flux. These results represent a first attempt to cross-compare multiple top-down and bottom-up regional flux estimates.

INTRODUCTION
Multiple independent investigations on regional flux scaling have been occurring as part of the Chequamegon Ecosystem-Atmosphere Study (http://cheas.psu.edu), located in the upper Midwest region of northern Wisconsin and Michigan, USA. The region is a highly productive area of dense forest and lowland wetlands. Eddy covariance flux measurements have been made at a regionally representative 447-m tall tower. Additionally, a cluster of seven multi-year and four short-term towers operated by several research groups has been assembled to sample various ecosystems that occur throughout the region including wetlands and forest stands of various age and type.

Independent regional multi-year bottom-up flux estimates have been performed with 1.) tall-tower flux footprint land-cover based decomposition [W. Wang, submitted, 2005], 2.) multi-tower land-cover based aggregation (A. Desai, submitted, 2005) and 3.) forest inventory and biometric based ecosystem modeling using the Biome-BGC and Ecosystem Demography (ED) models. These methods are entirely independent, though the all rely on common land-cover data. The first method relies entirely upon decomposition of the tall tower flux measurements, the second upon stand-level eddy covariance towers and the third upon biometric and chamber-flux measurements.

Independent estimates of regional flux from top-down methods using tall tower and airborne CO$_2$ data have been done with experimental ABL budget methods (Bakwin et al., 2004; Helliker et al., 2004) and more traditional ABL single-tower and aircraft based budget estimates [W. Wang, PhD dissertation, 2005]. A six-tower seasonal inversion and ABL budget are also in process to provide more robust top-down seasonal flux estimates than estimates derived from 1-D data only.

We hypothesized that simultaneous application of multiple top-down and bottom-up methods will converge upon statistically similar net CO$_2$ fluxes for the region on both seasonal and annual time scales.
MAJOR FINDINGS
A multi-year record of ecosystem-atmosphere CO\(_2\) exchange at the tall tower shows that the surrounding forests and wetlands are a persistent annual source of CO\(_2\) to the atmosphere [Davis et al., 2003]. Interannual variability in fluxes is greater than the range of random error and therefore statistically significant. Multi-year carbon exchange measurements at the tall tower are clearly correlated with climate variability [D. Ricciuto, submitted, 2005].

Stand-level eddy covariance flux towers have observed significant spatial and temporal variability in net and gross carbon dioxide fluxes. Most of the spatial variations can be explained by stand age and species composition. Interannual variations of NEE, but not of GEP or ER, were generally coherent across all multi-year sites.

Scaling of stand-level towers shows that the tall tower is unique in its large respiratory fluxes. Aggregation scaling also suggests that although mature hardwood sites dominate the landscape, large respiratory sources from wetlands and recently disturbed sites cannot be neglected. However, none of the other towers in the cluster appear to capture the magnitude of the tall tower respiration. The flux footprint decomposition approach suggests that non-measured wetlands or recently disturbed stands around the tall tower are the likely source of this respiration. Further, biometric and chamber based measurements of mature hardwoods around the tall tower appear less productive than eddy covariance instrumented mature hardwood stands.

Bottom-up scaling methods generally converge to show moderate regional scale uptake, larger than observed at the tall tower and smaller than observed in mature forested stands. All bottom-up methods were sensitive to land cover spatial resolution, and ecosystem models generally required regionally-optimized parameters. Wetlands, clearcuts, and recent natural disturbances characteristically occur in small non-uniformly distributed patches, and are difficult to distinguish using coarse-resolution remote sensing. These types in aggregate form more than 30% of the landscape. Misclassification substantially biases landscape-level scaling via models.

The bottom-up methods are roughly consistent with top-down scaling methods. Top-down methods have been shown to be sensitive to boundary layer depth, free troposphere CO\(_2\) entrainment and usage of reanalysis winds. While the scaling methods have yet to be carefully reconciled, some elements of the comparison are clear. All methods yield growing-season net uptake of carbon that is greater than that shown by the WLEF flux data when integrated directly, not weighted for regional vegetation cover distribution. The discrepancy among methods, however, is substantially larger than the desired level of consistency. More comprehensive up-scaling efforts are being conducted to reduce uncertainty.

IMPLICATIONS FOR REGIONAL AND GLOBAL SCALING
Until the large respiratory source in the WLEF region is identified, and the causes of large variability among similar ecosystem types, it appears that important drivers of regional carbon fluxes are not identified in our current vegetation classification scheme, which is already more complex than typical large-scale remote-sensing land classification schemes. We are in process of identifying the causes of these differences, collecting observations on poorly represented cover types, and obtaining information of forest structure, will bring us closer to the degree of landscape detail needed to observe and model regional carbon budgets in this complex landscape. This is a fundamental, enabling step required to achieve the aims of regional, continental and global scale carbon programs.

REFERENCES